"E? R,

NACA RM h58C03

- UNC LASSIHIED Coby 4

RM A58CO03

CLASSIFICATION CHANGRD

UNCLASSIEER

RESEARCH MEMORANDUM

B e ey e o e v i 1t e e e ooy

To.-

211

TRANSONIC INVESTIGATION OF YAWED WINGS OF ASPECT
RATIOS 3 AND 8 WITH A SEARS-HAACK BODY AND
\"WIITH SYMMETRICAL AND ASYMMETRICAL BODIES
Q:,!Q INDENTED FOR A MACH NUMBER OF 1.20

Q\ By George H, Holdaway and Elaine W, Hatfleld

5 Ames Aeronautical Laboratory
o Moffett Field, Calif.
"

: ar
* LI.RARY €82V
§\Q§ JUN 30 1908

LANGLEY AE20RALTIZEL LASO
l\ CLASSIPIED DOCUMERT LIBRARY, KACA RATORY

LANGLEY riv. b, VIRGINIA

matarial conteins information mmmmmmammmmmmmmamm
éttheesplomgl laws, Title 18, U.H.C., Seca. 708 and T04, the trensmissfon or revelation of whick In any
pormllprohibltadbylsw

NATIONAL ADVISORY COMMITTEE
2  FOR AERONAUTICS

: WASHINGTON

June 30, 1958




NASA

NAGA RM A58C03 ’%.. M‘HLIULMM lﬂ@@ﬂ[ﬂ)nm JCLASSIFIED

NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

TRANSONIC INVESTIGATION OF YAWED WINGS OF ASPECT
RATIOS 3 AND 6 WITH A SEARS-HAACK BODY AND
WITH SYMMETRTCAT. AND ASYMMETRTCAL. BODIES
INDENTED FOR A MACH NUMBER OF 1.20

By George H. Holdaway and Elaine W, Hatfield
SUMMARY

This investigatlion, which emphasized the experimental and predicted
wave=-drag characterlstics of wing-body combinations, was conducted at a
Reynolds number per foot of about 4,000,000, Two yawed wings, each with
an average sweep of about L0, were tested with various bodies and the
results were compared with existing data for similar mocdels with swept-
back wings. An 8-percent-thick yawed wing of aspect ratio 6 was tested
with a fineness-ratio-ll Sears-Haack body, a symmetrically indented body
designed for a Mach number of 1.20,and an asymmetricel M = 1.20 indented
body. An aspect-ratio-3 yawed wing with a streamwlse thickness of sbout
5 percent was tested with a fineness-ratio-1l2.5 Sears-Haack body and =
symmetrical M = 1.20 Indented body.

In general, the effects of changing the plan form of a wing from
sweptback to yawed were similar for either aspect ratio. With or without
body contouring the drag cocefflcients were reduced at transonic speeds
and increased to a lesser extent at subsonlc and supersonic speeds by
yvawing the wings., Inboard loading on the sweptforward panel and outboard
loading on the sweptback panel of the yawed wings caused negative rolling
moments near zero lift, Predictions of the wave drag were satlisfactory
for the aspect-ratio-3 wings and unsatisfactory for the aspect-ratioc-6
wings elther sweptback or yawed.

INTRODUCTION

Experiment and theory (e.g., refs. 1 through 6) have demonstrated
that the supersonic wave drag can be kept low by using slender configura-
tions with smooth longitudinal distributions of volume, Usually the
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wave drag of the configurations was improved by the proper removal or
addition of volume to the body. Another possibility for reducing wave
drag exists - that of merely redistributing the wing volume. Since =
yawed wing has its volume distributed over a greater streamwise length
than a sweptback wing with similar panels, the yawed wing might be
expected to heve lower wave drag. The primsry purpose of this investi-
gation was to measure the drag of two yawed wings in combination with
several bodies, The wings had aspect ratios of 3 and 6 with streamwise
thickness-chord ratios of gbout 5 and 8 percent, respectively, Tests of
the latter thicker wing were of additional interest because theoretical
computations were not expected to apply and the relative msgnitude of
the experimental changes in wave drag in comparison with estimated values
were felt to be of interest,

Because of the asymmetry of a yawed wing, an asymmetrical body
contour was devised and tested with the aspect-ratio-6 wing. The basis
for the design is indicated by the plan view of this yawed wing in
sketch (a). As outlined in reference 2, the desired body indentation
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Sketch (a)

for a wing-body combination at a specified supersonic Mach number is
based on an average wing area obtained from all cuts tangent to the Mach
cone for each particular body station. As shown in the sketch, a curved
body could compensate for the different wing areas resulting from cuts
made 180° apart. A secondary purpose in testing the asymmetrical wing-
body combination was the possibility that the pressure-term contribution
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which appeafs in the wave-drag equation of reference L, but is neglected
in that of reference 2, would contribute to the wave-drag reduction.

The investigation included the measurement of the surface pressures
on all bodies and wings. Data for comparable sweptback wings (with
symmetrical bodies) were obtained from referénces 7 and 8. Test data
were obtained for an angle-of-attack range of *4°, a Mach number range of
0.80 to 1.20, and a Reynolds number per foot of about 4,000,000.

The symbols used in the report are presented in appendix A.
MODELS AND TESTS

Yawed wings of aspect ratios 6 and 3, each with an average sweep of
roughly LO®, were used with various bodies for this investigation. The
wings were fabricated of solid steel and covered by plastic impregnated
glass cloth containing pressure tubes. A sketch of the aspect-ratio-6
yewed wing with a Sears-Haack body with a closed-body fineness ratio of
11 i1s shown in figure 1. This body is, by definition, a minimm-wave-
drag body for transonic speeds for prescribed volume and length; its
equation is given in figure 1. A similar body was used with the aspect-
ratio~3 wing, but in this case the closed-body flneness ratio was 12.5.
Details of the aspect-~ratio-3 yawed wing are given in figure 2(a). In
both figures 1 and 2(a), note the comparsble sweptback wings indicated
by dashed lines.

The yawed wings were also used with the basic Sears-Hsack bodies
symnetrically indented for minimum wave drag at M = 1.20 by the proce-~
dures given in reference 2. The indentations for the yawed wings
neglected a small portion of the wing tip when it was projected ahead of
the body nose for some roll-anglie cuts. These indented-body radil are
listed in table I. A photograph of the aspect-ratio-3 yawed wing with
the indented body is shown in figure 2(b). The cross-sectional area
distributions normal to the free stream for the various combinations are
shown in figures 3 and L. )

Asymmetrical bodies indented for M = 1.20 were designed by a
method discussed in appendix B. Only the asymmetrical body for the
aspect-ratio-6 wing was constructed and tested for reasons to be dis-
cussed in the next section. Geometric details are presented in table II
and figure 5(a), and a photograph of the model is presented in figure 5(b).
The body cross-sections in this case are elliptical with a ratio of the
horizontal to the vertical axis of 2 to 1. (This ratio is altered near
the. body base to approach circulsr sections to accommodate the circular
model-support sting.)

l . R |
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Wing-pressure orifices were located as shown Iln figure 6. Pressure
orifices were located on the symmetrical bodies as shown in figure T.
The locatidns of the pressure orifices on the asymmetrical body are shown
in teble III and flgure 8.

The models were tested in the Ames 1h-foot trensonic wind tunnel
which is of the closed-return type with perforsted walls in the test sec~
tion. A sketch of the high-speed region of this test facility is presented
in figure 9. The flexible walls ahead of the test section produce the
convergent-divergent nozzle required to generate supersonic Mach numbers
up to 1.20. This tunnel is similar to the smaller Ames 2- by 2-foot tran-
sonic wind tunnel which 1s described in detail in reference 9. One excep-
tion, however, 1s that the 14-foot tumnel 1s not of the variable-density
type, but operates at atmospheric pressure. The models are mounted on a
sting and the forces are measured as electrical outputs from a strain-gage

balance locgted within the model. Transition of the boundary layer was
fixed for each body by Carborundum grit (size 200) distributed over 1 inch
of the body ncse as canl be seen in Ffigures 2(b) and 5(b).

Force data, wing pressures, and body pressures were obtained over
an angle-of~attack range of about +4°,  The Reynolds number pexr foot of
the tests was sbout 14,000,000 throughout the Mach number range of 0.80
to 1.20. The tunnel blockage of the models was 1n each case lesgs than
one-half of 1 perceunt, and the data should be relatively free of wall
interference as indicated by reference 9. All aerodynamic coefficients
are based on the complete plan-form srea of the particuler wing for which
the results apply. The pitching moments were computed sbout the moment
centers listed in figures 1 and 2. These moment centers were selected
as the average of the locations of the gquarter chords of the mean aero-
dynamic chords of the sweptback and sweptforwsrd panels. The drag coef-~
ficients were adjusted by equating the base pressures to free-stream
static pressure. The magnitudes of the base-drag coefficients for this
investigetion were comparsble to those presented in reference 8 for
gimilar base condltioms.

The weve-drag comp®nent of the zero-lift drag coefficilent at
supersonic sgpeeds was estimated using the harmonic analysis method of
reference 5. The zero-lift rise in the drag coefficlents above the sub-
sonic level at M = 0.80 was assumed to be directly comparsble to the
wave drag, because sample theoretical computatlions for each wing model
showed a friction-drag-coefficient variation (from M = 0.80 to M = 1.20)
which was of the same order as the estimated accuracy of the experimental
data of CD = £0.0005. TFor the symmetrical bodies the wave drag was com-
ruted for the bodies to closure and then corrected for the portion of the
body cut off for sting mounting as was done in reference 8. This correc-
tion was equal to & Cp, of -0.0006 for the aspect-ratio-3 wing and
-0.0010 for the aspect~fatio-6 wing. For the asymmetricel bodies the
wave drag was computed for the bodies as cut off, with the area curves
erbitrarily faired to have zero slopes at the base of the model.
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HESULTS AND DISCUSSION

The results wlll be discussed in two mejor divisions with primary
emphasis on the wave drsg. The first section will be concerned with
force measurements and the last section with zero-lift pressure coeffi-
cients. The pressure data are used primarily as an aid in interpreting
the force data.

Aerodynamic Characteristics

Plots of the basic data for the aspect-ratio~-6 yawed wing with the
asymmetrical M = 1.20 indented body dre shown in figure 10. These data
were selected as representative, although this was the only configurse-~
tion which had significant (although small) yawing-moment (fig. 10(e))
end side~-force coefficients (fig. 10(£)). The aerodynemic coefficients
of the various models with the aspect-ratio-6 wing are presented in fig-
ure 11, and similar date for the models with the aspect-ratio-3 wing are
presented in figure 12. The drag polars presented in figures 11(c) and
12(c) clearly indicate that the indentations were effective in reducing
the drag at all supersoniec Mach numbers and st lifting conditions as well
as at zero lift. The subsonic drag data for the symmetricel M = 1.20
indented body with the aspect-ratio-6 yawed wing (fig. 11(c)) appear to
be too low because of the lack of agreement with the unindented config-
uration at M = 0.80. Unfortunately, datas for the indented configuration
were not obtained at M = 0.90 and 0.94. The supersonic drag data were
checked at zero lift by a separate run st M = 1.195. The drag at zero
1ift will be discussed later.

Lift and moments.- In general the 1lift and moment curves were more
nonlinear for the asymmetrical body with the aspect-ratio-6 yawed wing
(fig. 11) than for any other model. The assumption of a center-of-
pressure location which was an average of the locations of the guarter
chords of the mean aerodynamic chords of the sweptforward and sweptback
panels was quite good at subsonic Mach numbers for the aspect-ratio-6
yawed wing end at M = 1.05 for the aspect-ratio-3 yawed wing as shown
by the pitching-moment data of figures 11(b) and 12(b).

Of particular interest were the rolling-moment date of figures 11(4)
and 12(4). Generally, for each yawed wing the rolling moments decreased
with an inerease in positive 1ift. The pressure date, which will be pre-
sented later, showed that the sweptforward panel had greater inboard
losding and the sweptback wing had the grester outboard loading which
accounts for the negative rolling moments. Some penalty in drag would
probably be incurred in providing lsteral trim for these configurations.
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The 1ift curves for the two yawed wings with theilr respective
Sears-Hasck bodies were sufficiently linear that the slopes could be
measured and are compsred in figure 13 with values from references 6 and
T for compareble sweptback-wing-body combinations. Reletive to thelr
comparable (same wing sections end volume) sweptback wings the aspect-
ratio-6 yawed wing was superior at supersonic Mach numbers and the

aspect-ratio-3 yawed wing was inferior at most Mach numbers.

Zero-lift-drag.- In compsrison with sweptback wings, the yawed wings
heve cross-sectional area distributions normal to the free stream (see
fig. 14) that are equivalent to longer and thinner bodies and were there-
fore expected to have lower wave drag at M = 1,00, These expectations
were reallzed as shown in figure 15. TIn both cases the yawed wings had
lower drag at transonic speeds and higher drag at both subsonic and super-
sonic speeds than the sweptback-wing models. The higher drag for the .
yawed wings at subsonic speeds might be the result of separated flow near
the wing-body Juncture, The higher drag at supersonlc speeds was not
predicted theoretlcally and is probably & result of the reduced sweep of
the leading edge of the sweptforward panel. As shown 1n. table IV the
leading-~edge stagnation pressures on the sweptforward panel at M = 1,20
were 30 to 60 percent grester than those on the sweptback one.

As mentioned previously the symmetrical M = 1.20 indentations were
successful in reducing the supersonic drag of the yawed wings end, in
particular, at the zero-lift coefficients as shown in figure 16. These
results for the aspect-ratio-3 yawed wing with the indented body are
replotted in figure 17 with zerc-lift drag coefficients from reference 8
for the sweptback wing and similarly indented body. It is apparent that
at the design Mach number of 1,20 the indentatlon for the yawed wing did

not alleviate the greatly increased drag of the yawed wing in comparison
with the sweptback wing.

Although the theoretical predictions for the aspect-ratio-6 wing
with the asymmetrlcally indented body Indicated an Increase in wave-drag
coefficient at M = 1,20 of 0.0020 in comparison with the symmetrically
indented model, the experimental results indlcated no penalty. This
result may be noted from the zero-lift drag coefficlents of figure 18
end the drag-rise coefficients of figure 19. Figure 19 includes the
results for the aspect-ratlio-6 wing with the baslic Sears-Haack body.
From figure 19 i1t may be noted that the wave drag was reduced by the
asymmetrical contouring relstive to the basic body by 10 to 40 percent
at all the supersonic Mach:-numbers. No guantitative wave-drag compsri-
sons should be made relative to the symmetrically indented configuration
because of the uncertalnty of the subsonlic data.

Figure 20 shows that the computed zero-11ft drag for the aspect-
ratio~-6 sweptback wing was not in agreement with experimental values
from reference 7. This 1s also true for the yawed wing (fig. 21). These
results 1llustrate that the method of reference 5 cannot be relied on to
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estimate accurately the wave drag of relatively high-aspect-ratio wings
of this thickness. Figures 22(a) and (b) show that the calculations are
relisble for the aspect-ratio-3 wing. The computations for this wing
are more accurate for the indented configuration which has the more opti-
mum area curves, The 1ittle peak in the computed curve is at the Mach
nunber for which the leading edge of the swepbforward-wing panel is
sonic.

Effect of obligue-force term, BL(x,6)/2q.- The body of the asymmet-
rically indented model tested was sufflclently asymmetrical relative to
normel aircraft design that & check of the size of the oblique-force
term of reference 4 at M = 1.20 and zero 1lift was of practical interest.
The size of this term at zero 1lift would probably (but not necessarily)
be a maximm at the highest test Mach number because the term is a direct
function of B and goes to zero at M = 1.,00. The pressures on the body
used to compute the oblique-force term are shown In figure 23. The ori-
fice locatlions are given in figure 8 and table ITI. As a result of the
relative thinness of the wing, the oblique-force-term contribution from
the wing should be negligible at zero 1ift. The obligue-force terms
obtained from the pressure coefficients for various cuttlng-plane angles,
8, are shown in figure 24k, and the equivalent area distributions for two
representative 6 angles of 0° add 180° are presented in figure 25,
Although the area curves for each 6 angle were altered slightly by
introducing the equivalent areas of the oblique-force term, the over-all
effect on the computed wave-~drag coefficlents was negligible for M = 1.20.

Pressure Results

Summery plots of some of the more Interesting wiang pressure
coefficients at zéro 1ift are presented in figures 26 through 29. The
pressure coefflcients near the wing-body juncture are of interest rela-
tive to techniques such as reference T for reducing the interference
effects near a wing root at high subsonic and transonic speeds. The
curves of figures 26 and 27 show that the sweptforward panels, in com-
parison with the sweptback panels, have juncture pressure coefflcients
which would be expected to give more favorable drag interference with
the bodies (particularly at M = 1,00). The general effect of the asym-
metrical indented body on the wing pressure near the wing-body Juncture
(shown in fig., 26) was to reduce the pressure coefficients almost as if
the wing were thinner.

A comparison of the wing pressure coefficlents at three spanwise
stations on the sweptback wing, the sweptback panel, and the sweptforward
panel is made in figure 28 for the aspect-ratlio-6 wings and in figure 29
for the aspect-ratio-~3 wings. The results for the wings of different
aspect ratios are similar, These pressure data clearly demonstrate the
large inboard loading on the sweptforward panel and the large outboard
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loading on the sweptback panel or the sweptback wing. These loadings
explain the negative rolling moments near zero lift obtained from the
force measurements, The wing pressure coefflcients for the sweptback
panel generally approached the values for the sweptback wing.

The wing pressure coefficlents at zero 1ift for the sspect-ratio-6
yawed wilng with various bodies are gilven in detall in figures 30 through
32 and present a direct comparison hetween sweptback and sweptforward
panels. The body pressure coeffilclents for the aspect-ratio-6 yawed
wing at zero 1ift are presented in figure 33. Similarly, the wing pres-
sure coefficlents for the aspect-ratlo-3 yawed wing models are presented
in figures 34 and 35 and the body pressure coefficients in figure 36.

CONCLUDING REMARKS

In general, the effects on the drag charascteristics of a model
obtained by changing a sweptback wing to a yawed wing were similar for
elther the aspect-ratio-6 or -3 wings. Without body contouring, drag-
coefflclent reductions at a Mach number near 1.00 of gbout 0.0050 to
0.0100 were obtained by yawing the wings. Yawing the wings caused
increases in the drag coefflclents at subsonle Mach numbers of sbout
0.0015 to 0.0030 and at M = 1,20 of ebout 0.0035 to 0.0060. In each
case the lower values are for the aspect-ratio-3 wing which had the
larger wing area and the thinner sectlions. With a symmetriecal M = 1,20
indented body, the aspect-ratio-3 yawed wing agaln had lower drag at -
transonic speeds and higher drag at M = 1,20 relatlve to a comparable
indentation for a sweptback wing. For both yawed wings the M = 1.20
indentations reduced the supersonic wave drag without an lncrease in
drag at M = 1.00.

Predictlions of the wave drag were satlisfactory for aspect-ratio-3
wings and unsatisfactory for the aspect-ratio-6 wings, elther sweptback
or yawed, Although the theoretical predictlons for the aspect-ratio-6
wing with the esymmetrically indented body Indicated an lncrease in wave-
drag coefficient of 00,0020 in comparison with the symmetrilcally indented
model, the experimental results indicated qualitatively no penalty.

Introduclng the equlvalent area curves cobtained from the oblique-
force term at zerc 1lift to the area curves analyzed for M = 1.20 had a
negligible effect on the predicted wave drag.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronautics
Moffett Field, Calirf., Mar. 3, 1958
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APPENDIX A
SIMBOLS

wing aspect ratio

model span

drag coefficient

zero=-1i1ft drag coefficient

rise of Cp, sabove subsonic level at M = 0.80 or theoretical
wave-drag coefficients

1ift coefficlent

rolling-moment coefficient

pitching-moment coefficient, measured about the average of the
locations of the quarter chords of the mean aercdynamic chords

of the sweptback and sweptforward panels

yawing~-moment coefficient

P-P,

%

pressure coefficient,
side-force coefficient
local chord of wing, measured parallel to the x axis

local chord of design airfoil section of the aspect-ratio-3 wing,
measured perpendicular to A = 39.45C line

mean aerodynamic chord

Juncture chord, measured in x direction from point of inter-
section of wing leading edge and body

distance from asymmetrical body mean centexr line to reference
line, x axis

perpendicular distance from xz plane through body mean center

line to surface of asymmetrical body for different 0 as
shown in figure 5(a)

!!~——-—.———v.—m'
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L(x,8)

™

L NACA RM A58C03

resultant force (on the obliquely cut gsection) normal to the
free stream and parallel to the plane 6 = counstant (ref. 4)

length of theoretical body to closure
free-streem Mach number

number of terms or harmonics used in the theoretical computations
of wave drag

local static pressure on the model

free-stream statlc pressure

free-stream dynamic pressure

Reynolds number

radius of body

radius of Sears-Haack body at %? maximom radlus
projection of Sg on a plane perpendicular to the x axls

area formed by cutting configuration wlth planes tangent to the
Mach cone

Certesian coordinates as conventlional body axes (measured from
the body reference line for the asymmetrical body)

angle of attack

M2l

angle between the positive y axis and the projection of the
tangent to the Mach cone in the yz plane; also roll angle

sweep angle

dlstance In the x direction measured from the lntersection of
the wing lesding edge and the body

angle ln the xy plane between the lntercept with the xy plane

of the cutting planes tangent to the Mach cone and the positive
y axis . [ . i

AR
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APPENDIX B
DESIGN OF THE ASYMMETRICAL BODY

It hes been shown that the wave drag of a configuration for a Mach
number greater than 1 is a function of cross-sectlonal area cuts of planes
tangent to the Mach cone (ref., 2); that is, at a particular Mach number
the average of the wave-drag components of all of the area cuts will be
the drag for that Mach number.

Previous methods of indentatlion have been to optimize the drag for
a particular Mach number with a body shape which 1is constant for all 6
angles (a body of revolution). The body of revolution was indented

\
\
\
\
\
\
\
\
a \
rea of_O° cut
N \
w \
g‘ Area of 180° cut \
3 T S s S \
o) e O e~ N T N
° —
&N / Body station, x
s
e \
a \ .
\
\ ~
N\ V 180° cut
\ —
\
\ O®cut__— A
\ =
\
\ Asymmetrica! body
\

Sketch: (a)

symmetrically for the average of the wing areas computed from each 6
ares cut of the Mach cone. However, for the yawed wing the individual
wing areas vary greatly from the average (sketch (a)), so it was thought
that for this configuration an asymmetrical indentgtion might produce
lover wave drag than the conventional symmetrical type of indentation.
For the asymmetrically indented body the cross-sectlonal area contribu-
tion of the body would be more for some 6 cubs than for others., The
body contribution would be designed to complement the cross-sectional
area contribution of the wihgs (sketch (a)).
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The followlng procedure was used in deslgning the asymmetrical body
for the aspect-ratio-6 yawed wing. The area distribution of & Sears-Hasack
body (minimum wave drag at transonic speeds for prescribed volume and
length) was teken to be & desirable distribution for the wing-body combi-
nation for each @6 cut. The design Mach number was chosen to be M = 1.20,
The most desirable area distribution of body cross section for each roll
angle or & cut would be obtalned if the computed wing area for each 6
cut were subtracted from the Sears-Haack area distribution.

5

Optimizing all cubts at once presernted nmumerous problems, so 1t was
decided to begin with one or two cubts. It was thought that if the body
shape could be improved for two extreme cuts (6 = 0° and 180°), the cuts
in between might also be improved. A body wilth an asymmetrical shape
such as the one shown below would create the desired effect; that is
small body area for 0° and large body aree at 180°, The 90° cut would
have an area falling between the two extremes as was also desirable,

Asymmetrical body

Symmetricol body

Plan view

y < )
x—-% —
z o
8=0° 90° [{-{old
Projected cross-sectional areas Projected cross-_sectionul areas
are the same for ail 8 vary with 8
Sketch (b)

The vertical height of this body was assumed toc be small in comparison -
with the horizontal, en elliptic shape with a ratio of 1 to 2 was chosen;
thus the @ = 90° cut became aspproximately equal to the M = 1.00 cut;
and the vertical helghts of all cuts were approximgtely the same, To
ald in calculetion, the maximum thickness of the elliptical cut was
assumed to lie on the body reference line and the projected areas were
assumed to be elliptical. The errors introduced were calculated and
found tc be small,

The method chosen to obtain the asymmetrlcal shape was to leave the
8 = 909 ares Alstribution constant and shear the body in the y direc-
tion along planes perpemdicular to the x axlds in such & way as to -
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obtain the desired area for the other two cuts, 6 = 0° and 6 = 180°,

For the aspect-ratio-6 yawed wing, the body area distribution selected

for the 6 = 90° cut was the same as that for the symmetrical average
indented body for M = 1,20, and for the 6 = 180° cut, the Sears-Haack
ares distribution less the aspect-ratio-6 yawed wing area for the 6 = 180°
cut was used. It was felt that the average distribution for the 6 = 90°
cut would aid in satisfying both the 6 = 0° and 6 = 180° desired area
distribution.

The contouring was not successful in lowering the complete drag for
the design Mach number. The individual components of the wave drag were
affected as explained below. The contouring succeeded in smoothing the
6 = 180° cut distribution as shown in figure 37 and it would have been a
Sears-Haack distribution as desired except for newly exposed wing volume
due to the contouring. The magnitude of the 6 = 0° cut distribution was
lowered; however, the slopes of the ares curves were not improved and,
consequently, the computed drag was not lowered, in fact, there was an
increase. The calculated drag component for the 6 = 90° cut which should
have remalned the same as for the symmetrical average indented body was
somevwhat worsened due to newly exposed wing areas. Similar computations
with comparable resulis were made for the aspect-ratio-3 wing. Changes
in the area curves asre shown in figure 38 and the computed drag for the
asymetrical shape is shown in figure 22.
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TABIE I,~ COORDINATES FOR THE SYMMETRICAT, M = 1,20 INDERTED BODIE3

[Dimensions in inches]

Body for aspect-ratio-6 wing

Bedy for aspect-ratio-3 wing

Station, | Radlus, | Station, | Radius, | Station, | Radius, | Statlion, | Radius,
X r X r X r X r
0 0 4o, 20 3,676 0 0 60,00 | 4,048
.92 282 | 4h,00 3.725 3.00 .79 63.00 | 4.103
2.31 564 k5,00 3.769 6.00 1.235 66,00 4,115
L. 61 ,993 | 46,20 3.817 | 10,00 1.805 70,00 | 4.089
5,02 1,048 | 149,00 3.896 | 14,00 2,261 73.00 | 4,033
6.93 1.37h | 50.82 3.907 | 18,00 2,64k 76,00 | 3,948
9,2k 1.726 | 55.14 3.88h | 22,00 2,957 79.00 | 3.83hk
11,87 2,074 | 60,06 3.776 | 26.00 3. 207 82,00 | 3.69k
13.86 2.313 | 63.38 3.641 | 28,00 3.307 85.00 { 3.529
18.48 2.752 | 64.68 3.573 | 30.00 3.398 87.00 | 3.h04
23,10 3.054 | 69.30 3.301 | 32,00 3. 145 88.73 | 3.286
26.63 3.203 | 7o0.2k 3.230 | 34,00 3. 491 90,00 | 3.195
27.72 3.232 T3.92 2.932 36,00 3.497 93.00 2.958
28,00 3.231 | T8.5% 2.479 | 38,00 3.506 96.00 | 2,675
28.50 3.223 | 80.53 2.243 | %0.00 3.561 98.62 | 2.397
29.06 3.205 83.16 1,902 L2,00 3.61% | 100.1h 2.230
30,00 3.226 85.47 1.561 4,00 3.656 101.81 2,020
31,00 3.267 | 87.38 1.236 | 46.00 3.6906 | 103.48 | 1.799
32,34 3.336 | 87.79 1.165 | 49,00 3.753 | 105.15 | 1,562
32,81 3.365 90,09 .688 50, 00 3.775 | 106.82 1,298
36.96 3.583 | 91.48 .333 | 52,00 3.824 | 108.49 | 1.023
39.00 3,640 92,40 0 54,00 3.877 | 10,15 679
40,00 3.653 55.00 3,908 | 111.37 .397
41,00 3.664 56.25 3,048 | 112.49 | ©
41,58 3.672 58.00 3.995
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TABLE IT.~ COORDINATES FOR THE ASYMMETRICAT. M = 1.20 INDENTED BODY

8 = 5,629°
4
0.069
u7
13
165
206
248
286
%%
371
391
ko7
L19
uau

k3.
ik
2
W7l
LT
kg2
koo
hot
50k
513
59
2k
33
533
535
530
5e6
2l
Mo
ko3
%E
e
393
362
324
2gl

8 = o°

Horizontal
orpises
¥

lﬁeeﬁzlm5-nﬂ.wle for dariritions of nomenclsburs used,




TABLE TTT,~- COORDINATES FOR LOCATIONS OF PRESSURE ORIFICES ON THE UPPER SURFACE OF THE
ASYMMETRICAL M = 1.20 INDENTED BODY
[Dimensions in inches]
6 =0° 6 = 22,5° 6 = 45° 8 = 90° 6 = 135° 6 = 157.5° 6 = 180°
X ¥ 3 x y % x ¥ < x ¥ % x ¥ -4 x ¥ b4 x y 3
b7 |Ll.47]0 hool o 0.61 3.27| -1.09| 0
9.70|2.60]0 8-71| .07} 0.62 T.42 1 ~0.89 | 0.50 6£.77| -1.86] ¢
1476 {4150 . 2.2 .3}a.50 10.35 | -2.49 | ©
20.21 |6.3%| O 18.25| 3.39]2.7% | 16.82| 1.2%]1.85]15.57| ~.64]|L.56 1h.23 | -2.6710
2h.68 | 7-03| 0 21.68 | 2.54 | 2.09 18.58 ] ~2.12 | ©
28.45 | 6.6T| 0 26.91 | L. 2,02 |25.70| 2.56|2.22| 2h.h7| .TL|1.96 22,93 | -L.61|0
31,90 | 5.88 | 0 .24 | w89 1.49] 30,36 | 3.56{2.00|29.24] 1.86|2.22}28.071 .11[2,03]27.22{ -1.13 145 126,62} -2.0910
33.57 5.3 |0 32.61 | b h7{1,5h | 32.06] 3.11{2.08}30.92| 1.392.24|25.81( ~.Pg}2.00 28,04 | -1.50{ 1.46 [ 28.31 | -2.55 | O
35,22 {4.85]0 34.5913.93]1.56 | 33.Th | 2.59]2.15 .46 -.81]2.04]30.62| -2.06]1.57|29.98 | -3.04] 0
37.68 | 40310 37.06 | 3.10 | 1.61 | 36.18| 1.79|2.25|35.00} © 2.47| 33.86 | -1.94 | 2.16 | 33.03 | 2,97 | 1.52 [ 32.h2 | -3.90| O
%0.18 | 3.2910 39,43 2.33 [ 1.64] 38.63| .96]2.31 36.19 | -2.71]2.25[ 35.36| ~3.96 | 1.58 | 34.80 | -h.8% | O
hopglo.molo k2,05 1.62|1.66] b1 .17{2.32]39.B4 | -L.75 | 2.61| 38.38 -3.65| 2.3 | 37. TR | k.96 1.62 | 37.13 | -%.86| O
ks34 12,3210 W76 | LAk | Lo | b3.T2| -2 2034 41,06 | -b.46 ] 2.30 | Lo,k | ~5.82 | 1.65 | 39.53 | ~6.T8 | 0
WT.44 | 2.16 | © %6.63| .95 |1.73| 45,54 -.69] 2.39 | #h.12| 2.8k | 2.60] 42.T8 h.88t 2,32 | 10.80 | -6.33] 1.66 | L. 2k | 7.3k | ©
.37}2.06|0 49.36| -.98| 2. b7 | 47.78 ] -3.35 | 2.7k | 46.29 | -3.6L 2.4p .53] -8.2610
.32 {L.97] 0 53,32 | ~1.03| 2,47 | 51.69 | -3.49 ] 2.77 | 2.07 | -53.53 2.48 48.11] -8.8710
63.05|1.59] 0 ELhg | ~7T] 2.4 [ 59.83 | -3.28 | .80} 58.15 | -3.81 | 2.47 56.16 | -8.80] ©
70.57| .87]0 69.66| -.51|2.27|68.09 | -2.87 | 2.84 | 66.47 -5.33] 2.36 65.02| =T.51| ©
7h.00 0 R To.2h | .65 2.86 69.66 1 ~6.54 1 0

=
g

(a) The vertical Gimensioms, z, for £ = 0° end 1807, with exception of stetion 74.00 of 8 = 0%, are shown in the 1dealized

pogition, These polnts Were moved upward 1/8 inch as necesgary to clear the horigontal perting rlane of the body or the

wing juncture with the body.

(b) The actun) lengtha of the wing-body-Juncture chords were ugsld Iin computing g/ca uged in the plots of the body pressure

data; sweptback penel ey = 13.91 inches; sveptforward panel oy = 12.75 inches.
(c) Bee figure 5 and appendix A for definiticns of nomenclature used.
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TABLE IV.- WING LEADING-EDGE PRESSURES AS INDICATED BY x/c = O ORIFICE

Aspect-ratio~5 wing with Sears-Haack hody

Aspect-ratio-3 wing with Seers-Hasck body

;75 Sweptforvard panel Sweptback panel ﬁE Sweptforvard panel | Sweptback panel
Mach ; Mach
mmber 0,139 0,194 | 0,500 | 0.938 | 0.139 | 0.19% [0.500 |1 rher 0.179] 0.505] 0,888 | 0.179 | 0,24 | 0.505
0.8 0.749] 0.720] 0.730 | 0.683 | 0.565 | 0.519 | 0.486 0.8 0.856] 0.791 { 0.871 ] 0.535 | 0.469 | 0.613
.9 .98 .7561 .760| .735| 597} .54h| .4B82 .9 -9051 .828] .905] .567] .613| .640
.96 81y L7881 78T .T7R] 62T 575 | 495 -85 -935{ .847| .93} .589| .719| .658
1.00 868} .816| .802) .B02{ ---} 47| .520 1.00 953 .869| .961| .564{ .T70| .63
1.04 .898| .851| .833} .829| .63k| .565 | .511 1.05 994t .908| .990| .600| .g902| .61
1.10 9781 .923) .ook| .87h] .665] .6u2 | .585 1.10 1.015] .928| .994} .637| 997 .663
1.20 1.006f .ok1f .903] .857TF .725| .645 | .573 1.20 1.081| .965f1.045] .664|1.373) .699
Aspect-retio-6 wing with symmetrical Aspect-ratio-3 wing with symetrical
M = 1.20 indented body M = 1.20 indented body
.8 .732] LJTOM| .TA9{ .691| .5%62)| .320] .507 .8 Tro{ .791| .846) .m54 -1 4o
.9 e Bl B Bl B e .9 8151 .829] .884{ .588} -~--| .519
.96 81k 760 .TB3| T8 617} .5TT| .537 5] 8y ] .Buh| .907| .608) ---| .536
1.00 B2ht L7731 T8 788 591§ .54l | .563 1.00 8751 -873] -935| .596| ---| .565
1.04 867} .808| .822] .827| .61p1) .559 | .529 1.05 «913] .896] .961| .625| ---| .sh2
1.10 .9021 .84 .854] .831| .641| .599 | .559 1.10 Lu61 .924] .982] .660 | 545
1.20 9681 .909} .887| .B65| .732| .658 | .606 1.20 | 1.009] .964{ L.003f .685| ~=-| .600
Aspect-ratio-6 wing with asymmetrical
M = 1.20 indented body

08 -775 -7]'"3 0779 -882 -—— -701 -5]+’-|-

.9 .803| .T81| .799f .70 -] .68k ] .5%%

-9 830 .TO| TT8| «T84| === .737| .599

1.00 L] 869 -811{- L] 801|' . 893 ——— . 773 ] 575

1.0k .898| .8hk| .839) .959| ~--| .7611] .585

1.10 L7l .8731 .880) .924 -==} 7871 .599

1.20 2521 .915| .943| .939| ---{ .BUL| .612

8T
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II [ Equation of body radii Wing area, sq ft, 6.00 LS
‘. [,_(l_ g)’-]m Wing toper rotio,  0.40 2
f L Moment center, Sta. 34.00 g
&
-t 47.05 - NACA 64A008 sections
t/4
| 4363 §c12.74 ?I
e 29,06 ———= 17.14 o
' (o] s =
I “_.R g 7 /ro-uo/ ] _—
j ol - - 0
F —
N
Dimensions In inches _:—I 6.86 l 24.00 -
- 1 29240 -

Flgure 1, - Aspect-ratio-6 yawed wing with the fineness-ratio-1l Sears-Haack body.
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Wing areoa, 8q {1, 8.72
Wing taper ratio, 0.40

" B Moment center, Sto. 43.23
NAGA 64A006 sect'lons
perpendicular 10 ¢/4
- 52.7%
T=2L7
Dimensions in inches
29.23
© \ ——— - Y
1 \
\
\
\
\
\
\\
d AN
. \_\,;____\
1= 11250 -

(a) Geometric details.

Figure 2,~ Aspect-ratio-3 yawed wing with the symmetrical M = 1,20 indented body,
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(p) Model in wind tunnel.

Fgure 2.- Concluded.
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(a) Wing with Sears-Haack body.
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Body station, x,in.
(b) Wing with symmetrical M=1.2indented body.

Figure 3.- Cross-sectlonal area distributions_for the aspect~ratio-6 yawed
wing wlth its Sears-Haack body and symmetrical M = 1.20 indented body.
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Figure L, - Cross-sectional area distributions for the aspect-ratio-3 yawed
wing with its Sears-Haack body and symmetrical M = 1,20 indented body.
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Dimensions in inches

359I

72.000

3408

Section AA

74.000

(a) Geometric details.

Tigure 5.~ Aspec_‘b-z_‘atio-_6 yawed wing with the asymmetrical M=1.20
1ndented body.
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(b) Model in wind tunnel,
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Figure 5, - Concluded.
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Aspect-ratio-3 wing

Flgure 6.- Location of wing pressure orifices,
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10.73
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-0.044
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566
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Indented body
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990" 750 990" 6750
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Body section showing pressure siations
around tha bodyin the region of the wing

{a) Bodles with aspect-ratio~6 yawed wing,

+e

Body saction showing pressure
stations around the body

Flgure 7,- Location of pressure crlfices on symmetrlcal hodles,
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(b) Bodies with aspect-ratic-3 ymwed wing.

Figure 7.~ Concluded.
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Figure 8.- Location of body pressure orifices on the asymmetrical M = 1,20 indented body used
with the aspect-ratio-6 yawed wing. (See teble III for specific body stations, )
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Flgure 9.- Two views of the high-speed region of the Ames 1lh-foot transonic wind tunnel,
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Flgure 10, - Aerodynomic characteristics of the aspect-ratio-6 yawed wing with an ssymmetrical
M = 1.20 indented body.
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(b)
Figure 10, ~ Continued,

T “jueis1}4000 3417



NACA RM A58CO3 B
& &) o
- MO .lO\\mxn
mﬂl/.m : .\.n_
_.mk |- Ibﬂ\k.\ et
N -2 PO N O IO -5 - =
%.ALIJ'A . . e
“ N
MAY:OIAVJ.VI LoV [
—T— _
£ S Ot
s Q2 o - o T n"._ . r

15 *jue1913J809 41

AP R Rlny,

.04 Drog coefficient, Cp, for M=0.80

02

0

Cp

(e} Cp, vs.
Flgure 10, ~ Continued,

33




34

eSO TN Wi RACA RM AS5BCO03
S GmOTO—-OTO=GO~CrO—O—0—0
Q
3
3 -t :
8 3
=
Az - o
3= N : 0k
RESEat RS
Saia—=F I daady = & =]
— @ —
& = g
o B
S
g
3 S e OO £
g
o
e IO oo ©
-M—
" 3
m N = e 7 ¢ T
! ¥



NACA RM ASBCO3
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Flgure 10, - Continued.
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Lift coefficient, C
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~04 0 .04 Side-force coefficient, Cy , for Mx0,80
(£) Cp, vs. Cy

Flgure 10, - Concluded,
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Lift coefficient, C_
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